Programme Infor	mation & Pl	LOs					
Title of the new pro	gramme – incl	luding any year abroad/ in indu	ustry variants				
MEng in Computer Sci	ence with Artifi	cial Intelligence (and 'with a year i	n industry' variant)				
Level of qualificatio	n						
Please select:		Level 7					
					Year in Industry		
Diago indicate if th		is offered with any year abreas	d / in industry, voriont	_	Please select Y/N	Yes	
Please indicate ii th	e programme	is offered with any year abroad	u / in industry variant	5	Year Abroad		
					Please select Y/N	No	
Department(s):							
Where more than or	ne department	t is involved, indicate the lead d	lepartment				
Lead Department	Computer Sci	ience					
Other contributing							
Departments:							
Programme Lead	er						
Dr Suresh Manandhar							
Purpose and lear	ning outcom	nes of the programme					
Statement of purpo	se for applicar	nts to the programme					

This programme produces multi-skilled, highly competent graduates who are equipped to become leaders in computer science and artificial intelligence and who understand the implications of their work both for themselves and for society as a whole. Through the programme, you will see two integrated strands of work which help you to develop both your computational thinking and your skills as an engineer. It is the combination of these two areas that will make you attractive to employers, enabling you to make an immediate contribution when you move into employment.

Al is concerned with the development of computational systems that are intelligent. These systems could be intelligent in that they think and act in a rational way (reaching the correct conclusions and choose the right actions), or they may be intelligent in that they think and act like us, with all our human strengths and weaknesses.

The challenge is in developing systems with the capabilities to perceive, learn, store information, reason about what is known, communicate using human language and interact with the physical environment.

By choosing the Integrated Masters (MEng) programme, rather than a Bachelors (BSc/BEng), you will have the opportunity to study a larger number of optional modules, allowing a broader exploration of the discipline, and to work on a larger final-year project, enabling greater depth of independent study in an area that you have chosen yourself.

The programme will provide you with a solid foundation in the principles and practices of computer science and artificial intelligence, including coding, mathematics and basic engineering; with breadth in computer science and related technical disciplines; and with advanced training in focussed areas of your choice covering topics such as machine learning, natural language processing, multi-agent systems and computer vision amongst others. This solid theoretical foundation will allow you to take full advantage of the new technologies and languages which are bound to appear during the course of your career.

You will understand engineering trade-offs that cross disciplines, for example between hardware and software, and you will be able to participate effectively in multidisciplinary teams. You will also develop the skill to contribute professionally to solving complex commercial and industrial engineering problems.

The programme is accredited by both the Institution of Engineering and Technology (IET) and the BCS (the Chartered Institute for IT) – both professional bodies of computing and engineering.

Programme Learning Outcomes

Please provide six to eight statements of what a graduate of the programme can be expected to do.

Taken together, these outcomes should capture the distinctive features of the programme. They should also be outcomes for which progressive achievement through the course of the programme can be articulated, and which will therefore be reflected in the design of the whole programme.

course c	the programme can be articulated, and which will therefore be reflected in the design of the whole programme.
PLO	On successful completion of the programme, graduates will be able to:
1	Apply computational thinking to problems they encounter, using skills in problem analysis, representation and abstraction, and in algorithm selection, at different scales in complex situations, drawing on the foundations of computer science but with an awareness of current research issues and areas of commercial development. [Computational thinking]
2	Adapt to new technologies, languages, paradigms, terminologies and models as they become available, being confident to use cutting-edge techniques and tools in their practice, informed by self-directed study of current research and scholarship, and by awareness of open-source systems and tools. [Adaptability]
3	Design and build computer-based systems to serve the needs of users and the commercial imperatives of an employer, with the most appropriate combination of software and hardware, by applying the theory and practice of programming and software engineering, while making effective use of the variety of physical implementations on which that software may be running. [Software and hardware; Users]
4	Engineer AI (Artificial Intelligence) systems that operate independently or in conjunction with other software systems by rigorous understanding of the problem domain by using skills from the whole breadth of Computer Science across all parts of the development lifecycle, with deeper skills in AI. [Engineering; Breadth and depth]

Make immediate and effective contributions as part of multidisciplinary teams in industry, consultancy or education, by organising themselves to manage workloads, optimise resources and meet deadlines, using experiences from team projects.

[Team working]

Communicate and negotiate about complex computational problems and their solutions with specialist audiences and associated stakeholders in a clear and organised manner, with compelling and convincing arguments.

[Communication]

Operate as responsible Computer Science professionals, by maintaining awareness of key legal and ethical issues, appreciating how computers and technology can impact on society and the importance of risk management, and by continuing to expand and deepen their knowledge through critical engagement with the discipline.

[Professionalism]

Apply theoretical and practical knowledge of chosen areas of cutting-edge AI (Artificial Intelligence) and available commercial technology to new or unfamiliar problems they encounter in employment or further study, and to communicate the results in a significant technical report or other appropriate medium.

[Cutting-edge of of CS research and applications]

Programme Learning Outcome for year in industry (where applicable)

For programmes which lead to the title 'with a Year in Industry' – typically involving an additional year – please provide either a) amended versions of some (at least one, but not necessarily all) of the standard PLOs listed above, showing how these are changed and enhanced by the additional year in industry b) an additional PLO, if and only if it is not possible to capture a key ability developed by the year in industry by alteration of the standard PLOs.

PLO2*: Adapt to new technologies, languages, paradigms, terminologies and models as they become available, being confident to use cutting-edge techniques and tools in their practice, informed by self-directed study of current research and scholarship, **by commercial awareness** and by awareness of open-source systems and tools. [Adaptability]

PLO3*: Design and build computer-based systems to serve the needs of users and the commercial imperatives of an employer, with the most appropriate combination of software and hardware. by

applying the theory and practice of programming and software engineering, while making effective use of the variety of physical implementations on which that software may be running. [Software and hardware; Users]

PLO5*: Make immediate and effective contributions as part of multidisciplinary teams in industry, consultancy or education, by organising themselves to manage workloads, optimise resources and meet deadlines, using experiences from team projects and appreciating how their own role relates to others and to the business of an employer or client.

[Team working]

PLO9*: Work to commercial standards by planning, implementing and monitoring their own work in relation to appropriate procedures and legislation. [Commercial standards]

Programme Learning Outcome for year abroad programmes (where applicable)

For programmes which lead to the title 'with a Year Abroad' – typically involving an additional year – please provide either a) amended versions of some (at least one, but not necessarily all) of the standard PLOs listed above, showing how these are changed and enhanced by the additional year abroad or b) an additional PLO, if and only if it is not possible to capture a key ability developed by the year abroad by alteration of the standard PLOs.

n/a

Explanation of the choice of Programme Learning Outcomes

Please explain your rationale for choosing these PLOs in a statement that can be used for students (such as in a student handbook). Please include brief reference to:

i) Why the PLOs are considered ambitious or stretching?

These PLOs are ambitious because they show how we expect our graduates to develop in many different ways. We teach both the theory and the practical application of computer science, and expect students to understand both the science and the engineering sides of the discipline. It is not enough to learn just about the various technologies, but graduates need to understand that computer scientists have to act in a professional way, aware of the impact of their work on society. Our graduates can communicate with a range of stakeholders and we expect them to work effectively in multidisciplinary teams. It is not easy to achieve all of these outcomes, and our graduates are well-prepared for employment.

For Integrated Masters students, the additional PLO (PLO8) shows how we expect our graduates to be working at the cutting-edge of the discipline.

ii) The ways in which these outcomes are distinctive or particularly advantageous to the student:

The insistence that all our graduates need to have a basic grounding in both hardware and software is distinctive, and we are also keen to ensure that our graduates know the principles on which the discipline is based, rather than necessarily being experts in the latest technology (which may well have become outdated within a few years). Our graduates will be able to apply these principles to new technologies in the years ahead. Many of the option modules taken in later years reflect the particular research interests in the department, such as non-standard (quantum, evolutionary) computation or artificial intelligence or embedded systems.

PLO5 reflects the prominence given to team-working throughout the programme: we expect our graduates to be able to work in teams, as this is likely to be a vital skill in their later careers.

iii) How the programme learning outcomes develop students' digital literacy and will make appropriate use of technology-enhanced learning (such as lecture recordings, online resources, simulations, online assessment, 'flipped classrooms' etc)?

Graduates of this programme have been immersed in digital activities throughout, and we expect them to become not just consumers of digital resources but also creators.

Technology-enhanced learning: departmental policy is that lecture capture is the default, unless there are specific reasons not to, such as Intellectual Property. All modules have VLE sites where resources such as lecture notes and recordings are stored, along with any module-specific tools, simulations etc. Where appropriate, assessments are carried out online, with all open assessments submitted in digital form.

iv) How the PLOs support and enhance the students' employability (for example, opportunities for students to apply their learning in a real world setting)? The programme's employability objectives should be informed by the University's Employability Strategy:

http://www.york.ac.uk/about/departments/support-and-admin/careers/staff/

Support for employability starts from stage 1, where the SKIL module explicitly looks at CVs, skill requirements for particular jobs and desirable competences on graduation. Throughout the programmes, industrial case studies are used, and several modules (eg SEPR and GPIG) base teamwork projects on scenarios from industrial clients.

vi) How will students who need additional support for academic and transferable skills be identified and supported by the Department?

In stage 1, the SKIL module uses small tutorial groups for teaching. Since much of the module content concerns academic and transferable skills, these small groups are ideal for identifying those in need of extra support, which will be provided by the supervisor, with assistance from specialised central services where appropriate.

vii) How is teaching informed and led by research in the department/ centre/ University?

Although stages 1 and 2 contain a fairly standard core curriculum, the option modules available in stages 3 and 4 are often based on staff members' research specialisms. In addition, final-year ISMs are mostly proposed by supervisors and arise from current research interests.

Stage-level progression

Please complete the table below, to summarise students' progressive development towards the achievement of PLOs, in terms of the characteristics that you expect students to demonstrate at the end of each year. This summary may be particularly helpful to students and the programme team where there is a high proportion of option modules.

Stage 0 (if your prog	gramme has a Foun	dation year, use the tog	gles to the left to show t	the hidden rows)			
Stage 1							
On progression from	n the first year (Stag	e 1), students will be abl	principles u	nderlying computing; to ing as used in computer	understand the founda	tions of electronics, syst	d apply the mathematical tems architecture and ; and to produce short report:
PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8
Individual statements							
Stage 2							
Stage 2							
	n the second year (S	tage 2), students will be	apply the n	nost appropriate; to und	erstand and apply basic ffectively in teams; to un	AI (Artificial Intelligence aderstand engineering to	programming paradigms and e) techniques to simple proble radeoffs in system developme
On progression from	n the second year (S	tage 2), students will be	apply the n	nost appropriate; to und e AI solutions; to work ej	erstand and apply basic ffectively in teams; to un	AI (Artificial Intelligence aderstand engineering to	e) techniques to simple proble
On progression from			apply the m that require to commun	nost appropriate; to und e AI solutions; to work ej icate with a variety of a	erstand and apply basic ffectively in teams; to ur udiences in a range of fo	AI (Artificial Intelligence anderstand engineering to primats.	e) techniques to simple proble radeoffs in system developme
On progression from PLO 1 Individual statements			apply the m that require to commun	nost appropriate; to und e AI solutions; to work ej icate with a variety of a	erstand and apply basic ffectively in teams; to ur udiences in a range of fo	AI (Artificial Intelligence anderstand engineering to primats.	e) techniques to simple proble radeoffs in system developme
On progression from PLO 1 Individual statements Stage 3	PLO 2		apply the n that require to commun PLO 4 age 3), use knowle problems in	nost appropriate; to und e AI solutions; to work ej icate with a variety of a PLO 5	erstand and apply basic ffectively in teams; to un udiences in a range of fo PLO 6 modules, together with ms a significant part; to	AI (Artificial Intelligence inderstand engineering to ormats. PLO 7 a variety of option mode adapt to new technology	e) techniques to simple proble radeoffs in system developme PLO 8 ules to engineer solutions to

Individual statements				

Programme Structure

Module Structure and Summative Assessment Map

Please complete the summary table below which shows the module structure and the pattern of summative assessment through the programme.

'Option module' can be used in place of a specific named option. If the programme requires students to select option modules from specific lists these lists should be provided in the next section.

From the drop-down select 'S' to indicate the start of the module, 'A' to indicate the timing of each distinct summative assessment point (eg. essay submission/ exam), and 'E' to indicate the end of the module (if the end of the module coincides with the summative assessment select 'EA'). It is not expected that each summative task will be listed where an overall module might be assessed cumulatively (for example weekly problem sheets).

If summative assessment by exams will be scheduled in the summer Common Assessment period (weeks 5-7) a single 'A' can be used within the shaded cells as it is understood that you will not know in which week of the CAP the examination will take place.

Stage 0 (if you have modules for Stage 0, use the toggles to the left to show the hidden rows)

Stage 1

Credits	Mo	dule				Αι	utum	n Tei	rm							S	pring	Terr	n							Sui	mme	r Ter	m			
	Code	Title	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
20	COM00003C	Human Aspects of Computer Science		S								A					EA															
20	COM00009C	Foundation in Electronics, Signals and Circuits												S										Α		П			Α			
15	COM00001C	Introduction to Computer Architecture		s										А												E			A			
20	COM00005C	Mathematical Foundations of Computer Science		s									A													E			А			
5	COM00008C	Skills, Knowledge and Independent Learning	s								A									E	Α											

			l	1	1	1		1		1	1	1	1	1			I	1	1	l	l					1	_	1	_		1	
10	СОМ00006С	Numerical Analysis												s												Е			Α			
20	COM00007C	Theory and Practice of Programming		s																						E	А		A			
10	COM00010C	Programming of Micro-controllers																			s					E	A					
Stage 2																																
Credits	M	odule				Aı	utum	n Te	rm							S	pring	Ter	n							Su	mme	r Tei	rm		_	
	Code	Title	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
10	COM00013I	Implementation of Programming Languages		s								E	А																			
20	COM00014I	Systems												s											Е		Α	Α				
20	COM00005I	Principles of Programming Languages		s																E		А							A			
10	COM00002I	Computability and Complexity												s								E							А			
20	COM00001I	Artificial Intelligence												s			Α								E				А			
10	COM00009I	Vision and Graphics		s								E	Α																			
30	COM00012I	Embedded Systems Project		s																E		Α			А							
	OR	OR																														
30	COM00008I	Software Engineering Project		S					A						A				A			E			A				A			
Stage 3																																
Credits	М	odule				Aı	utum	n Te	rm							S	pring	Ter	n							Su	mme	r Tei	rm			
	Code	Title	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
20	COM00001H	Analysable real- Time Systems		s									Α													Е			А			

20	COM00002H	Computer Vision	s							Е							Α	
20	СОМ00003Н	Embedded Systems Design and Implementation	s				A			A			E		A			
20	COM00005H	Computing by Graph Transformation	s					A					E				A	
20	СОМ00006Н	Information & Coding Theory	s					Α				E					A	
20	СОМ00007Н	Introduction to Neural Computing and Applications	s										E	A				
20	СОМ00009Н	Multi-agent Interaction and Games	s										E				A	
20	COM00010H	Machine Learning and Applications	s									E			А		A	
20	COM00012H	Programming: Correctness by Construction	s					Α					E				A	

Stage 4																																
Credits	l N	lodule				A	utum	n Te	rm							S	pring	g Ter	m							Su	mme	r Ter	m			
	Code	Title	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
50	COM00081M	ISM MEng CSSE Project	s																						EA							
20	COM00073M	Group MEng Project																						s		Α				EA		
10	COM00066M	Adaptive and Learning Agents																	s			E	А									
10	COM00069M	Critical Systems		S			Α		Е				Α																			
10	COM00071M	Evolutionary Computation		s			E								Α																	
10	COM00123M	Functional Programming Technology																	s			E	А									
10	COM00111M	Model-Driven Engineering		s			E						А																			

10	COM00082M	Topics in Privacy and Security								s		E			Α					
10	COM00042M	Quantum Information Processing								s		E				А				
10	COM00045M	Quantum Computation				s		E	Α											
10	COM00122M	Software Testing											S		EΑ	Α				
10	COM00063M	Static Analysis and Verification											s		EA	А				
10	COM00087M	Systems Architecture								s		E				Α				

Optional module lists

If the programme requires students to select option modules from specific lists these lists should be provided below. If you need more space, use the toggles on the left to reveal ten further hidden rows.

Option List A	Option List B	Option List C	Option List D	Option List E	Option List F	Option List G	Option List H

Management and Admissions Information

This document applies to students who commenced the programme(s) in:

2017/18

Interim awards available Interim awards available on undergraduate programmes (subject to programme regulations) will normally be: Certificate of Higher Education (Level 4/Certificate), Diploma of Higher Education (Level 5/Intermediate), Ordinary Degree and in the case of Integrated Masters the Bachelors with honours. Please specify any proposed exceptions to this norm.

Certificate of Higher Education Generic Level 4/Certificate

Diploma of Higher Education Generic Level 5/Intermediate

BSc Ordinary Degree Generic Level 6/Honours

BSc (Hons) Computer Systems

BSc (Hons) Computer Systems (with a year in industry)

Level 6/Honours

Level 6/Honours

MEng (Hons) Computer Systems

MEng (Hons) Computer Systems (with a year in industry)

Level 7/Honours

Level 7/Honours

Admissions Criteria

Typical offer AAA - AAB

Length and status of the programme(s) and mode(s) of study

Programme	Length (years)	Status (full- time/part-	Start dates/months (if applicable – for programmes			Mode		
		time) Please select	that have multiple intakes or start dates that differ from the usual academic year)	Face-to-face, campus	s-based	Distance learnir	ng	Other
Eng (Hons) Computer Science with Artificial Intelligence Level 7/Masters MEng (Hons) Computer Science with Artificial Intelligence with a year in indutsry Level 7/Masters	4/5	Full-time	n/a	Please select Y/N	Yes	Please select Y/N	No	

Language(s) of study

English.		
Language(s) of assessn	ment	
English.		
Programme accredi	itation by	Professional, Statutory or Regulatory Bodies (PSRB)
Is the programme reco	ognised or a	ccredited by a PSRB
Please Select Y/N: Y	Yes	if No move to next Section if Yes complete the following questions
Name of PSRB		
The programme is accr computing and engine	•	oth the Institution of Engineering and Technology (IET) and the BCS (the Chartered Institute for IT) – both professional bodies of
Are there any conditio	ns on the a	oproval/ accreditation of the programme(s)/ graduates (for example accreditation only for the full award and not any interim award)
n/a Additional Profession	and an Va	cation of Chandonda
		ents of accrediting bodies or PSRB or pre-requisite professional experience needed to study this programme?
	No	if Yes, provide details
(max 200 words)		
University award re	egulations	
The University's award at the end of this document		nt regulations apply to all programmes: any exceptions that relate to this programme are approved by University Teaching Committee and are recorded at
Are students on the pr	rogramme p	ermitted to take elective modules?
(See: https://www.yor	rk.ac.uk/med	dia/staffhome/learningandteaching/documents/policies/Framework%20for%20Programme%20Design%20-%20UG.pdf)
Please Select Y/N: Y	Yes	
Careers & Placemen	nts - 'With	Placement Year' programmes

Students on all undergraduate and integrated masters programmes may apply to spend their third year on a work-based placement facilitated by Careers & Placements. Such students would return to their studies at Stage 3 in the following year, thus lengthening their programme by a year. Successful completion of the placement year and associated assessment allows this to be recognised in programme title, which is amended to include 'with Placement Year' (e.g. BA in XYZ with Placement Year'). The Placement Year also adds a Programme Learning Outcome, concerning employability. (See Careers & Placements for details).

In exceptional circumstances, UTC may approve an exemption from the 'Placement Year' initiative. This is usually granted only for compelling reasons concerning accreditation; if the Department already has a Year in Industry with criteria sufficiently generic so as to allow the same range of placements; or if the programme is less than three years in length.

Programme excluded from Placement Year? No If yes, what are the reasons for this exemption:

Study Abroad (including Year Abroad as an additional year and replacement year)

Students on all programmes may apply to spend Stage 2 on the University-wide North America/ Asia/ Australia student exchange programme. Acceptance onto the programme is on a competitive basis. Marks from modules taken on replacement years count toward progression and classification.

Does the programme include the opportunity to undertake other formally agreed study abroad activities? All such programmes must comply with the Policy on Study Abroad

https://www.york.ac.uk/staff/teaching/procedure/programmes/design/

Please Select Y/N: Yes		
Additional information		
Transfers out of or into the programme		
ii) Transfers into the programme will be possible? (please select Y/N)	Yes	
Additional details:		

A student can apply to transfer to the "with a year in industry" variant of their degree at any time up, normally up to the end of Stage 1, if a suitable placement can be obtained. A student on any "with a year in industry" route who does not obtain a placement, who does not complete or is deemed otherwise to have failed the placement is transferred to the standard variant.

Transfers at Stage 1:

On successful completion of stage 1, a student may transfer between MEng in Computer Science with Artificial Intelligence and MEng in Computer Science with Embedded Systems Engineering.

BEng in Computer Science with Embedded Systems Engineering,

BEng/BSc in Computer Science or

MEng in Computer Science.

Transfers at Stage 2:

On successful completion of Stage 2, a student may transfer from MEng in Computer Science with Artificial Intelligence to Eng* in Computer Science,

BEng/BSc in Computer Science.

On successful completion of Stage 2, a student who has taken the Stage 2 Embedded Systems project module may transfer from MEng in Computer Science with Artificial Intelligence to MEng* in Computer Science with Embedded Systems Engineering or BEng in Computer Science with Embedded Systems Engineering, subject to any restrictions on lengthening the programme.

*NB Students need to achieve an average mark of at least 55% at the end of Stage 2 to continue on any of the MEng programmes Restricted transfers:

Transfers between Computer Science programmes and the Computer Science and Mathematics joint degree programmes are not normally permitted, owing to incompatible core modules.

Transfers are not normally permitted after stage 2. However, a student who successfully completes stage 3 of the MEng in Computer Science with Artificial Intelligence, but fails to achieve the conditions for entry to stage 4 of the MEng in Computer Science with Artificial Intelligence, or who cannot complete stage 4, or does not pass stage 4 of the MEng in Computer Science with Artificial Intelligence, is transferred the BSc Computer Systems, an exit-only award (and a route without PSRB accreditation)

ii) Transfers out of the programme will be	possible?
(please select Y/N)	

Additional details:

A student can apply to transfer to the "with a year in industry" variant of their degree at any time up, normally up to the end of Stage 1, if a suitable placement can be obtained. A student on any "with a year in industry" route who does not obtain a placement, who does not complete or is deemed otherwise to have failed the placement is transferred to the standard variant.

Transfers at Stage 1:

On successful completion of stage 1, a student may transfer between MEng in Computer Science with Artificial Intelligence and MEng in Computer Science with Embedded Systems Engineering,

BEng in Computer Science with Embedded Systems Engineering,

BEng/BSc in Computer Science or

MEng in Computer Science.

Transfers at Stage 2:

On successful completion of Stage 2, a student may transfer from MEng in Computer Science with Artificial Intelligence to Eng* in Computer Science,

BEng/BSc in Computer Science.

On successful completion of Stage 2, a student who has taken the Stage 2 Embedded Systems project module may transfer from MEng in Computer Science with Artificial Intelligence to MEng* in Computer Science with Embedded Systems Engineering, subject to any restrictions on lengthening the programme.

*NB Students need to achieve an average mark of at least 55% at the end of Stage 2 to continue on any of the MEng programmes Restricted transfers:

Transfers between Computer Science programmes and the Computer Science and Mathematics joint degree programmes are not normally permitted, owing to incompatible core modules.

Transfers are not normally permitted after stage 2. However, a student who successfully completes stage 3 of the MEng in Computer Science with Artificial Intelligence, but fails to achieve the conditions for entry to stage 4 of the MEng in Computer Science with Artificial Intelligence, or who cannot complete stage 4, or does not pass stage 4 of the MEng in Computer Science with Artificial Intelligence, is transferred the BSc Computer Systems, an exit-only award (and a route without PSRB accreditation)

Exceptions to University Award Regulations approved by University Teaching Committee

Yes

Exception	Date approved
Please detail any exceptions to University Award Regulations approved by UTC	

Date on which this programme information was updated:

11/08/2017

Please note:

The information above provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if they take full advantage of the learning opportunities that are provided.

Detailed information on the learning outcomes, content, delivery and assessment of modules can be found in the module descriptions.

The University reserves the right to modify this overview in unforeseen circumstances, or where the process of academic development, based on feedback from staff, students, external examiners or professional bodies, requires a change to be made. Students will be notified of any substantive changes at the first available opportunity.

Programme Map

Please note: the programme map below is in interim format pending the development of a University Programme Catalogue.

Programme Map: Module Contribution to Programme Learning Outcomes

This table maps the contribution to programme learning outcomes made by each module, in terms of the advance in understanding/ expertise acquired or reinforced in the module, the work by which students achieve this advance and the assessments that test it. This enables the programme rationale to be understood:

- · Reading the table vertically illustrates how the programme has been designed to deepen knowledge, concepts and skills progressively. It shows how the progressive achievement of PLOs is supported by formative work and evaluated by summative assessment. In turn this should help students to understand and articulate their development of transferable skills and to relate this to other resources, such as the Employability Tutorial and York Award;
- · Reading the table horizontally explains how the experience of a student at a particular time includes a balance of activities appropriate to that stage, through the design of modules.

Stage	Module				Programme Lea	rning Outcomes			
		PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8
		Apply	Adapt to new	Design and build	Engineer Al	Make immediate	Communicate	Operate as	Apply theoretical
		computational	technologies,	computer-based	(Artificial	and effective	and negotiate	responsible	and practical
		thinking to	languages,	systems to serve	Intelligence)	contributions as	about complex	Computer	knowledge of
		problems they	paradigms,	the needs of	systems that	part of	computational	Science	chosen areas of
		encounter, using	terminologies	users and the	operate	multidisciplinary	problems and	professionals, by	cutting-edge AI
			and models as	commercial	independently or	teams in	their solutions	maintaining	(Artificial
		analysis,	they become	imperatives of	in conjunction	industry,	with specialist	awareness of key	, ,
		·	available, being	an employer,	with other	consultancy or	audiences and	legal and ethical	available
		and abstraction,	confident to use	with the most	software	education, by	associated	issues,	commercial
		and in algorithm	cutting-edge	appropriate	systems by	organising		appreciating	technology to
		,	techniques and	combination of	rigorous	themselves to	clear and	how computers	new or
			tools in their	software and	understanding of	manage	organised	and technology	unfamiliar
		·	practice,	hardware, by	the problem	workloads,	manner, with	can impact on	problems they
			informed by self-		domain by using	optimise	compelling and	society and the	encounter in
		drawing on the	directed study of		skills from the	resources and	convincing	importance of	employment or
		foundations of	current research	•	whole breadth of		arguments.	risk	further study,
			and scholarship,	programming	Computer	using	[Communication	management,	and to
			and by	and software	Science across all	experiences from	J	and by	communicate
			awareness of	engineering,	parts of the	team projects.		continuing to	the results in a
		current research	open-source	while making	development	[Team working]		expand and	significant
			systems and	effective use of	lifecycle, with			deepen their	technical report
			tools.	the variety of	deeper skills in			knowledge	or other
		•	[Adaptability]	physical	Al.			through critical	appropriate
		[Computational		implementations on which that	[Engineering; Breadth and			engagement with the	medium.
		thinking]							[Cutting-edge of of CS research
				software may be running.	ueptiij			discipline.	and applications]
				[Software and				[FIOIESSIOIIAIISM]	and applications
				hardware; Users]					

Stage 1	Foundation in Electronics, Signals and Circuits (FESC)		Students will be able to formulate solutions, in high-level languages or in low-level programming models	Students will be able to rationalise about newly-encountered architectures	Students will be able to make informed choices in hardware-software codesign, and to select appropriate components to fulfil specific electronics requirements		work tasks effectively	Students will learn how to explain their thought processes in solving complex problems	Students will begin to consider the importance of security in system design	
		(and if applicable, assessed through)	by studying low- level programming and the functionality of code structures	by evaluating micro- architecture design choices	by writing low- level microcode and modifying a processor design, and through experimental investigation of component behaviours. Assessed by lab report, containing answers to questions posed in weekly lab scripts, and closed exam, assessing knowledge of processor hardware design and instruction set	by designing anlogue and digital circuits, and experiencing methods of testing. Assessed in lab report, describing how to design a piece of hardware to solve a specific problem, and in closed exam	partner during	by working with a partner during practical sessions	hardware which	

	Human Aspects			I	I	I		I	I	I
Stage 1	of Computer Science (HACS)	Progress towards PLO		Students can adapt to the need for scientific rigour when developing innovative systems	Students become able to apply the practice of software engineeering to design systems that serve the needs of users	Students become able to engineer solutions to problems of human needs in which digital systems form a significant part	Students can make effective contributions to team, including the allocation of work, coordination of activities and the need for individual responsibility	Students are able to communicate their work to software engineers, researchers and a broader audience in a range of styles suitable to the audience	1 ' '	Students become able to apply rigorous research methods to address new research challenges, relevant either to further study or usability practice
		By working on (and if applicable, assessed through)		by conducting an experiment	by doing a user- centred design project	by doing a user- centred design project	by doing a user- centred design project and experiment as groups	by writing a report on an experiment and a report on a user- centred design project, and doing a trade-fair demonstration of a design	by designing an experiment, with concern for validity and participant involvement	by conducting and reporting a new experiment
Stage 1	Introduction to Computer Architecture (ICAR)	Progress towards PLO	Students will develop skills in problem analysis and algorithm selection	Students can adapt to new instruction sets and future technologies	Students will be able to design simple computer architectures from basic building blocks (CPU, memory, peripheral devices, systems buses) and then assess their performance for a given problem	Students will learn that a system's processing performance is not solely determined by the algorithm selected or the hardware or the software, but the interaction of all three	Students will learn to work cooperatively in order to design, implement and test a program for a given problem	Students learn how to explain their thought processes in solving complex computational problems	Students will begin to consider the importance of security in system design	

		By working on (and if applicable, assessed through)	by solving programming problems on a variety of architectures. Assessed via open assessment on architecture design, and closed exam which tests theoretical aspects.	by writing assembly language programs on a wide range of processor architectures. Assessments require knowledge of a range of architectures.	by solving a series of exercises	by writing assembly language programs for different processor architectures	by working with a partner during practical sessions	by working with a partner during practical sessions	by designing software which considers security	
Stage 1	Mathematical Foundations of Computer Science (MFCS)	Progress towards PLO	Students acquire skills in abstract representation, problem analysis and formal reasoning, and a practical grasp of foundational ideas and methods	terminologies, notations and			Students increase their capacity to appreciate and combine different views	Students learn how to explain their thinking about technical issue		
		By working on (and if applicable, assessed through)	by solving a series of problems involving concepts of discrete maths and formal languages and automata. Assessed by closed exam	by working with unfamiliar notations and layered ideas in discrete mathematics and formal languages and automata. Asessed by closed exam			by working in small groups to solve problems	by working in small groups to solve problems		
Stage 1	Numerical Analysis (NUMA)	Progress towards PLO	Students will be able to formulate problems using mathematical representations and solve them using numerical techniques	Students will understand how general techniques can be applied to study new problems and models		Students will understand how to apply standard libraries to solve a variety of numerical problems				

		By working on (and if applicable, assessed through)	by studying and applying a number of concepts from continuous maths. Assessed by closed exam	by applying abstract mathematical ideas to concrete problems		by implementing solutions to a series of numerical problems				
Stage 1	Programming of Micro-controllers (PROM)	Progress towards PLO	Students will learn to develop skills in problem analysis and algorithm selection		Students will learn to select the most appropriate solution for an identified system function	Students will understand how information is represented within a signal (eg amplitude or frequency components), and the effect of noise upon these	Students will learn to work cooperatively in order to produce a prototype solution	Students learn how to express their thought processes in solving complex computational problems		
		By working on (and if applicable, assessed through)	by designing, implementing and testing a software-based solution to a given problem		by assessing the suitability of both hardware and software solutions to a given problem. Open assessment where students demonstrate their solution to the given problem	by building analogue and digital circuits. Open assessment requires demonstration of working hardware and software	by working in small groups	by working in small groups		
Stage 1	Skills, Knowledge and Independent Learning (SKIL)	Progress towards PLO		Students will be able to investigate a topic of their own choosing, and construct a critical analysis of a small number of items of relevant literature				different communication methods, and consider different possible audiences	Students start to learn about the wider (legal and ethical) implications of their discipline, and look ahead to what they hope to have achieved by graduation	

		By working on (and if applicable, assessed through)		by preparing a critical analysis of paper in the area, and using this as a basis for other communication activities			by engaging with a number of different communication methods (written report, oral presentation to tutorial group, poster) for a number of different audiences (peers, employer, academic report)	by analysing computing job adverts to discern the skills and competencies required for the post, and by drafting the CV they would like to have on graduation	
Stage 1	Theory and Practice of Programming (TPOP)	Progress towards PLO	(a) Students will become familiar with the theoretical tools used to understand algroithms and their complexity (b) Students will develop skills including problem solving, abstract representation, ability to select or develop an appropriate algorithm/data structure and to develop appropriate software testing strategies	(a) Students gain the ability to develop algorithms and data structures independent of platform (b) Students will be able to transfer skills learnt on one programming paradigm to another one	Students obtain the basic ability to build and maintain software systems, enabling larger software engineering projects	Students will appreciate the issues of how to communicate, argue and assess the proposed analysis of the proble, and the choice of design implementation			

		(and if applicable, assessed through)	(a) by analysing well-known algorithms and data structures, in addition to solving a series of theoretical problems. Assessed by closed exam (b) by implementing a series of solutions to problems (well known and new) in a specific programming language and paradigm. Assessed by timed software lab exam	(a) by practising analysis of programs using different theoretical techniques (b) by implementing algorithms and data structures using two different languages from distinct paradigms. Assessed by timed software lab exam		by developing small pieces of software, and modifying code written by another programmer	by designing and implementing a solution to a larger problem in a small group of students over a period of two weeks		
Stage 2	Artificial Intelligence (ARIN)		Students will be able to apply computational thinking to problems that can be solved using core Al techniques	Students will be able to transfer their skills to solving unseen problems	Students will be able to apply their knowledge of AI as part of a larger problem	Students will be able to understand and apply AI techniques to simple problems requiring AI solutions			

		By working on	by learning and	by working on a	by using	by learning basic		
		(and if applicable,	practising the	range of	industrial-	AI methods and		
		assessed	key principles	problems that	strength tools for	techniques		
		through)	underlying	can be addressed	for specific			
			search	using Al	problems in AI,			
			algorithms,	techniques.				
			machine learning	Assessed in lab-				
			algorithms and	based				
			approaches to	assessment and				
			and formalisms	closed exam.				
			for problem and					
			knowledge					
			representation.					
			Practical aspects					
			are assessed by					
			lab-based					
			asessment, and					
			theoretical					
			knowledge by					
			closed exam.					
Stage 2	2 Computability	Progress towards	Students will	Students will be	Students will			
	and Complexity	PLO	understand the	able to adapt to	appreciate the			
	(COCO)		difference	the properties of	relevance of			
			between	new languages	formal methods			
			solvable and	and paradigms	and be able to			
			unsolvable		apply them to			
			problems and be		reason about			
			able to analyse		software and			
			the		hardware			
			computational		systems			
			complexity of					
			algorithms					

	1		I		-	1
		by studying	by formally			
	(semi-)decidable	computability	analysing			
assessed		and complexity in				
through)		a basic	termination and			
		computational	complexity			
		model	properties of			
	the time and		Turing machines			
	space complexity					
	of Turing					
	machines. Closed					
	exam assesses					
	students'					
	familiarity with					
	the foundations					
	of CS, with					
	questions about					
	Turing machines					
	and Turing-					
	computable					
	functions, the					
	difference					
	between					
	solvable and					
	unsolvable					
	problems,					
	reductions					
	between					
	problems, time					
	and space					
	complexity of					
	decision					
	problems, and					
	complexity					
	classes such as					
	NP.					

Stage 2	Embedded	Progress towards	Students will gain	Students can	Students will be	Students will	Students will be	(a) Students will	Students will be	
	Systems Project	PLO	the ability to	adapt to any	able to identify	understand, and	able to	be able to	able to consider	
	(EMPR)		rationalise,	hardware system	and evaluate	be able to	competently	demonstrate	and reflect on an	
			discuss, plan and	and any	possible design	navigate, an	participate in	their ability for	ethical or	
			implement	constraints	solutions for	engineering	team-working,	effective verbal	professional	
			software in an	encountered in a	complex system	lifecycle, from	practical	and written	issue relevant to	
			embedded	future situation,	requirements	concept through	managemnet of	communication	an embedded	
			system context	including gaining		to design,	team meetings,	with technical	computing	
				proficiency in		implementation,	task allocation	stakeholders	system they have	
				new		testing and	and monitoring,	(b) Students will	designed	
				programming		validation	progress	be able to		
				languages and			checking and	express opinions		
				hardware			technical	in a non-		
				interfaces, as			planning	technical way		
				they become				that is		
				available or				compatible with		
				relevant				non-technical		
								stakeholder		
								understanding		

		(and if applicable,	programming methods	by studying complex technical documentation, and the use of a new programming model	by designing a hardware and software codesign specification and implementation to suit a given complex problem. Assessment of ability to generate working embedded artefact assessed via demonstration, which covers both system performance and user interface.	by undertaking a complex problem, where software , algorithms and engineering principles are all required	solutions to complex problems, performing various team management	(a) by live practical demonstration and by written reporting (b) by reflecting on an ethical or professional aspect of their project work in the written report	by reflecting on an ethical or professional aspect of their project work	
							system solution, hence coordination			
							required by all.			
Stage 2	Implementation of Programming Languages (IMPL)		Students will develop and be able to recognise situations in which a pipeline architecture can be applied, including its associated techniques, to represent sentences of formal languages	Students will improve their adaptability to new programming languages and paradigms	Students will build understanding of the relationship between high and low level expression of computation	Students will improve their software engineering skills				

		By working on (and if applicable, assessed through)	algorithms for	new programming language paradigm, lazy functional	by exploring the relationship between source code and machine-level code. Assessed in closed exam	by developing all the components of a compiler		
Stage 2	Principles of Programming Languages (POPL)	Progress towards PLO	able to judge the most effective programming techniques for a particular computational requirement	Students will be able to adapt to changes in language fashions, and new technologies as they occur during their careers	Students will be able to make effective use of current and future programming language implementations		Students will be able to communicate the choice of principles and technical rationales	

		1	1	l		1
By working on	by characterising		by implementing		by solving	
(and if applicable	, different	understanding	a series of simple		formative and	
assessed	programming	and applying the	programming		summative	
through)	principles,	fundamentals of	languages		problems in a	
	including	different	displaying the		variety of	
	concurrency.	programming	abstract		languages, and	
	Open	languages.	principles, and		writing concise	
	assessment	Assessed in open	solving similar		and focussed	
	requires	and closed	classic problems		explanations of	
	reasoned	assessments: as	in several		the solutions	
	comparison of	PLO1	different			
	several		languages			
	contrasting					
	aspects of					
	sequential and					
	cncurrent					
	programming					
	languages, and					
	how these may					
	be applied to					
	specific					
	programming					
	problems. Also					
	requires					
	comparison of					
	instances of					
	principles given					
	within different					
	languages.					
	Closed exam					
	assesses					
	understanding of					
	principles across					
	a range of					
	languages					
	studied.					
	studied.					

		1		1	1	1	1	1	1	
Stage 2	Software Engineering Project (SEPR)	Progress towards PLO	Students will be able to apply and empirically evaluate computational thinking in a software engineering context	Students will be able to adapt to new, unexpected and challenging software engineering problems	Students will be able to construct effective software with well-justified and articulated design decisions	Students will be able to carry out requirements analysis, design, verification, validation and change management	Students will be able to carry out project, risk, change and problem management, as well as planning, re-planning and negotiations, while meeting deadlines, and they will be able to apply team problem-solving techniques in	Students will be able to communicate with different stakeholders' different concerns; in addition they will be able to explain different facets of software and software engineering processes	Students will be able to apply and reason about different licensing and intellectual property protection mechanisms, and their relevance and value to software projects	
		By working on (and if applicable, assessed through)	by researching and designing specific and effective algorithms for a non-trivial software system	by researching, evaluating and implementing new models, lifecycles, methods and tools for software engineering, and applying them in new projects	by negotiating with stakeholders and exploring requirements and design trade-offs for a given software problem. Assessed in a series of open assessments.	by engineering and re- engineering a non-trivial software system. Assessed in a series of open assessments.	techniques in these tasks by working in teams, supported by facilitators, in a year-long project. Assessed in a series of open assessments and in closed exam.	by working with customers, presenting to peer groups, and writing different kinds of software engineering reports. Assessed in a series of open assessments.	by different	
Stage 2	Systems (SYST)	Progress towards PLO	Students will be able to apply the principles of resource management, networks, concurrency and databases	Students will be able to adapt to new systems programming approaches	Students will be able to build systems that exhibit required non-functional properties inclduing data consistency, process separation and (aspects of) security	Students develop engineering and problem-solving skills for buidling systems that can be applied to current and future industrial problems		Students will gain experience of communicating with stakeholders		

		By working on (and if applicable, assessed through)	by understanding these principles and the characteristics of these topics	the principles of and different approaches to systems programming (including networks and databases). Students' understanding of database nad network principles and practice is assessed by closed exam	by understanding how hardware supports an Operating System's provision of resource management. Students' understanding of OS's approach to management of resources within computer systems is assessed by closed exam	by solving realistic problems posed in laboratory sessions	by solving formative and summative problems, together with a varietry of laboratory problems, requiring writing concise and focussed explanations of the solutions	
Stage 2	Vision and Graphics (VIGR)	Progress towards PLO	Students will be able to understand the requirements of visual information processing, and implement computational thinking into software for analysing images and for creating computer graphics	able to adapt to any programming language and	Students will be able to process visual and graphical information	Students will be able to develop algorithms and programs for processing images and for computer graphics	Students will be able to communicate with technical and non-technical people about the solutions for and suitable approaches to complex computational problems of visual information processing, in a clear and organised manner	Students will be able to find computational solutions to new problems, communicate and report them such that other people can learn from their experience

-	I			l		
By working on	by applying	by learning the	by applying the	by engineering	by learning and	by applying
, , , ,	computational	principles of	visual	solutions to	understanding	cutting-edge
assessed	modelling of	visual infomation	information	problems of	how to represent	theoretical and
through)	visual	analysis,	processing and	visual	and process	practical
	information,	including the	computer	information	visual	Computer Vision
	using specific	physics and	graphics theory	processing, using	information and	and Computer
	algorithms for	geometry of	into programs	physical sciences	its underlying	Graphics
	image analysis	scene	and testing them	understanding	principles	
	(computer	information in	in processing	and computing		
	vision) and for	visual systems	visual	skills. Assessed		
	creating images		representation	by closed exam,		
	(computer		data	which includes		
	graphics).			mathematical		
	Assessed by			exercise		
	closed exam,			questions to		
	which includes			show model or		
	mathematical			algorithm is		
	exercise			understood;		
	questions to			students		
	show model or			describe how an		
	algorithm is			algorithm would		
	understood;			behave in given		
	students			scenario, and		
	describe how an			what constraints		
	algorithm would			a particular		
	behave in given			approach might		
	scenario, and			impose. For a		
	what constraints			given image or		
	a particular			model, they		
	approach might			work backwards		
	impose. For a			by reasoning		
	given image or			what might have		
	model, they			produced it.		
	work backwards			p. 244024 101		
	by reasoning					
	what might have					
	produced it.					
	produced it.					

Chara 2	Analysaskia Divil	Dun mana kanni i di	Carrela mara melli li m	Carrelanas cuill bur	Canada as a suitt	Carrala maa rootti tee	Ctda.uta in any in a		Charles and a state of
Stage 3	Analysable Real-	Progress towards		Students will be	Students will	Students will be	Students increase		Students will be
	Time Systems	PLO		able to adapt to	gain an	able to apply	their capacity to		able to apply
	(ARTS)		computational	new languages,	appreciation of	various	appreciate and		advanced
			thinking in order	whether they are	the need to use	approaches to	combine		scheduling
			to abstract the	domain-specific	software	fault-tolerant	different views		theory and new
			relevant	or generic	engineering	computing			programming
			application		techniques that				techniques to
			timing		help to deal with				Cyber-Physical
			requirements		large and				Systems, such as
			and computing		complex systems				those found in
			platform		(threads and				automotive and
			characteristics,		modules), and				avionics
			so that		they will also				applications
			predictions can		appreciate the				
			be made as to		pros and cons of				
			whether real-		writing low-level				
			time		software in a				
			requirements		high-level				
			will be met when		language				
			the system is		0.101				
			exhibiting its						
			worst-case						
			timing behaviour						

	ı		1	1	ı				
			by doing		by producing		, ,		by learning about
		(and if applicable,		how the	both high and	how to build	pairs to develop		and applying
		assessed	analysis	computational	low level	resilient systems.	software		current research
		through)	problems using	model needed to	software	Exam might			directions. Exam
			response time	support		involve problems			questions may
			analysis on	schedulability	a simple	using exception			cover topics
			various	analysis can be	embedded	handlers and			where the
			application use	supported in	system (the Ball	topics from			characteristics of
			cases and for	Ada, and by	Sorter) which	software fault			an application
			different	focussing on the	consists of	tolerance			are given and the
			execution	underlying	multiple threads				properties of a
			platforms.	principles that	of execution.				platform, and
			Assessed in	Ada supports.	Exam question				students need to
			closed exam,	Assessed by	might require				determine
			where questions	closed exam,	sketch solutions				whether the
			cover a range of	which might	in Ada for real-				system will meet
			topics where the	include definition	time related				its real-time
			characteristics of	of language-	application				requirements
			an application	based real-time	problems				'
			are given and the	abstractions,					
			properties of a	along with an					
			platform, and	evaluation of					
			students need to	their properties					
			determine	or a requirement					
			whether the	for an					
			system will meet	implementation					
			its real-time	of that					
			requirements	abstraction in					
				Ada.					
Stage 3	Computer Vision	Progress towards	Students	Students increase		Students are able		Students develop	
Stage 5	(CVIS)	PLO	understand the	their capacity to		to engineer Ai		their critical	
	(CVI3)	PLO	complexities of	address problems		solutions		writing skills	
				· ·		involving		WITHING SKIIIS	
			algorithm design in an	in an interdisciplinary		computer vision			
			interdisciplinary	way, not		•			
				· ·		systems			
			context	necessarily					
			constrained by	confined to CS,					
			the underlying						
			science of						
			human vision,						
			and can apply						
			this to real world						
			problems						

		By working on (and if applicable, assessed through)	by studying the principles underlying computer vision algorithms, both those based on algorithmics and those based on the underlying science (often physics, geometry or the biology of vision). Assessed by closed exam	by solving problems of algorithm design using models provided by a diverse set of disciplines		by studying and understanding key methods and techniques employed within computer vision		by undertaking a reading exercise and answering critical questions about a selected scientific paper about a computer vision algorithm	
Stage 3	Embedded Systems Design and Implementations (EMBS)	Progress towards PLO	Students become able to evaluate non-functional properties of embedded systems (such as timing or energy) with the appropriate level of accuracy	appropriate for a particular embedded system	Students can design system models that guarantee end- use non- functional requirements are met and can implement those models on physical prototypes	Students develop engineering and problem-solving skills that can be applied within industry	organise themselves,	Students develop their ability to critically evaluate their own work and current technologies	Students become aware of upcoming embedded system technologies and play a key role in the adoption of such technologies once they go into employment

By working on	by understanding	by studying	by using	by solving	by taking part in	by writing	by learning from
(and if applicable,		different	different	realistic	a team-based	reports,	researchers who
assessed	such systems,	specification	hardware and	engineering	technical design	performing	are actively
through)	including	languages, design		problems across	challenge	demonstrations	extending the
tillough	successive		platforms. A	multiple	Chanenge	and explaining	state-of-the-art
	refinements of		series of open	application		their solutions	in embedded
	abstract models	frameworks	assessments	domains. A		then solutions	systems
	of applications to	Traine Works	based on	series of open			Systems
	hardware		challenging	assessments, in			
	platforms		design problems,				
	p.ac.os		covering	are required to			
			embedded	present reports			
			software,	describing their			
			embedded	chosen			
			hardware, their	engineering			
			interfaces and	methodology			
			communicatin	and process, and			
			infrastructure.	justifying that			
			Students are	choice with			
			required to	regards to the			
			present and	application			
			demonstrate	domains covered			
			suitable	by the			
			hardware and	assessment (eg			
			software	wireless sensor			
			solutions, as well	networks, media			
			as reports	processing)			
			justifying their				
			design decisions,				
			presenting				
			quantitative and				
			qualitative				
			evidence of				
			meeting				
			requirements.				

Stage 3	Computing by	Progress towards	Students will	Students will be	Students will be			
Stuge 3	Graph	PLO	develop an	able to adapt to	able to write			
	Transformation	1.20	appreciation for	the properties of	graph problems			
	(GRAT)		problem solving	new domain-	for solving			
	(3)		and formal	specific	problems in			
			reasoning in	languages	graph-like			
			rule-based		domains and			
			systems and		reason about			
			domain-specific		program			
			languages		correctness and			
					complexity			
		By working on	by studying the	by studying the	by developing			
		(and if applicable,		properties of a	small rule-based			
		assessed	rule-based	rule-based and	programs for			
		through)	systems in the	non-	manipulating			
			domain of	deterministic	graph structures			
			graphs, and the	domain-specific	and analysing the			
			semantics and	language	properties of			
			use of a non-		these programs			
			deterministic					
			programming					
			language on					
			graphs. Assessed					
			by closed exam, which assesses					
			how well					
			students are able					
			to think					
			computationally,					
			by requiring					
			reasoning in a					
			non-standard					
			model of					
			computation					
			based on graph-					
			transformation					
			rules and asking					
			students to solve					
			graph problems					
			by rule-based					
			reasoning.					

	T	I			I		I	I	I	1
Stage 3	Information and	10	Students become	Students become		Students become			Students become	Students become
	Coding Theory	PLO	able to apply	able to adapt and		able to protect		able to	able to	able to deal with
	(ICOT)		computational	extend their		information from		communicate	understand the	the most
			thinking to	knowledge to		loss and to		with both	mathematical	mathematical
			modern issues	other		protect it from		mathematicians	principles and	abd fundamental
			associated with	mathematical		other adverse		and computer	difficulties which	problems they
			data storage and	models, such as		effects		scientists	are behind the	might encounter
			transmission	guantum		associated with			protection of	in both
				information and		limited and			confidential and	employment and
				computation,		incomplete forms			private	further study (eg
				and network		of transmission			information	PhD)
				design						
		D	h l d d			h l		les silve a marine a dela a	h I a a unit a a a a al	hl.a.a.a.i.a.a.b.a
		By working on	by analysing and	by studying and		by applying the		by learning the	by learning and	by learning the
		(and if applicable,		understanding		principles of		most basic	practising the	formal and
		assessed	methods and	the fundamental		error correction		definitions and	basic tools of	rigorous proofs
		through)	algorithms for	notions of		and channel		theorems in	cryptography	of the basis of
			data	information,		coding		information		the main
			compression.	coding and				theory and also		theorems of
			Assessed by	network theory				applying these		information and
			closed exam					tools to practical		coding theory
								examples		
Stage 3	Introduction to	Progress towards	Students will be	Students will be	Students will be	Students are able		Students will be		Students will
	Neural	PLO	able to apply	able to adapt	able to select the	to engineer		able to		better equipped
	Computing and			more readily to	appropriate	neural network		communicate		to approach real-
	Applications		thinking to	new	tools and	based Ai		with technical		world problems
	(INCA)		develop solutions			solutions		stakeholders		and present
	(1146/1)		to a broad range	paradigms	solve specific	3014110113		about complex		findings
			of complex	Paradigilis	problems			issues		Illianigs
					hionieiiis			issues		
			problems			1				

		By working on (and if applicable, assessed through)	by implementing and using different neuron models and neural network architectures	by applying different types of neural networks to a range of real problems. Open assessment (report) requires demonstration that students have assimilated different approaches to computation represented by different neural networks to discus application to different problems	training	by studying and gaining experience with neural network algorithms and implementation techniques	by working in small groups to analyse problems, and by giving presentations about solutions	by applying neural netwrks to ill-defined problems and by reporting on this exercise
Stage 3	Multi-Agent Interaction and Games (MAIG)	Progress towards PLO	Students will be able to define optimal individual and group behaviours and the impact of interaction environment designs on these	Students will be able to solve practical problems by applying abstract interaction models and to perform a precise analysis of complex multiagent situations		Students are able to engineer Ai solutions that include multi- agent interaction and games technology		

							1		
		By working on	by modelling and			by studying and			
		(and if applicable,	analyzing agent	mathematical		having practical			
		assessed	interactions as	abstractions and		exposure to			
		through)	mathematical	applying them to		multi-agent and			
			games. Assessed	problem solving		games based			
			in closed exam:			modelling			
			students are			techniques			
			given agent						
			interaction						
			scenarios						
			and asked to						
			formulate and						
			solve them						
			mathematically,						
			using techniques						
			presented in						
			lectures						
Stage 3	Machine	Progress towards	Students will be	Students wll be	Students will be	Students will be		Students gain	
	Learning and	PLO		able to adapt	able to develop	able to analyse		experience in	
	Applications		computational	existing machine	their own	and interpret		communicating	
	(MLAP)		thinking to	learning	software	different types of		their analysis and	
			develop	algorithms to	solutions to novel	data across		conclusions oin	
			Bayesian	new domains	data analysis	disciplines		moderately	
			learning	and new	problems			complex datasets	
			algorithms for	problems					
			complex learning						
			problems						

	ı		ı	1					1
		By working on	by learning the	by		by performing	by writing a		
		(and if applicable,		understanding	a range of	predictive	coursework		
		assessed	probabilistic	how a range of	different	analysis tasks on	report on specific		
		through)	principles	data analysis	machine learning		problem domains		
			underlying	problems can be	algorithms. Open	coming from			
			Bayesian	solved. Open	assessment on	different			
			machine	assessment on	applying machine	application			
			learning. Open	applying	learning to solve	domains. Open			
			assessment on	machine learning	problems on	assessment on			
			applying	to solve	given	applying machine			
			machine learning	problems on	dataset/domain:	learning to solve			
			to solve	given	requires	problems on			
			problems on	dataset/domain:	development of	given			
			given	requires	mathematical	dataset/domain:			
			dataset/domain:	development of	model, its	requires			
			requires	mathematical	implementation	development of			
			development of	model, its	and evaluation,	mathematical			
			mathematical	implementation	and reporting.	model, its			
			model, its	and evaluation,		implementation			
			implementation	and reporting.		and evaluation,			
			and evaluation,			and reporting.			
			and reporting.						
			Closed exam						
			asseses machine						
			learning theory						
Stage 3	Programming	Progress towards	Students will	Students will be	Students will	Students will	Students will		
0111800	Correctness by	PLO	become able to	able to handle a	understand how	understand	have an		
	Construction		carry out	variety of	to specify and	programming as	awareness of the		
	(PCOC)		problem analysis	modelling and	develop	part of an	issues of		
	(. 555)		using the	analysis	alternative	engineering	ambiguity and		
			mathematical	techniques to	software designs	discipline with	incompleteness		
			foundations of	deal with with	and meet the	solid	in informal		
			computer	systems	users' needs for	mathematical	descriptions		
			science	descriptions	reliability	foundations	descriptions		
		By working on			-		by writing formal		
				by learning to	by learning	by learning the			
			models using a	write models	formal	mathematical	descriptions of		
		assessed	data modelling	using	characterisations	principles of	systems		
		through)	language and a	mathematical	of the notion of	correctness			
			process algebra.	notations.	correctness				
			Assessed	Assessed					
			through closed	through closed					
			exam	exam					

Stage 4	Adaptive and Learning Agents (ALAS)	Progress towards PLO	Students become able to combine the multi-agent paradigm with machine learning and evolutionary techniques, to develop intelligent autonomous software agents capable of optimising their performance, both as an individual and as a team	:	Students will be capable of applying their machine learning skills effectively in an industrial setup with a minimum of preparation	Students will become capable of building on various AI skills and combining them effectively		Students become able to incorporate elements of cutting-edge research in their work
		By working on (and if applicable, assessed through)	by acquiring	:	by studying and using an industrial- strength machine learning and data maining tool			by studying and implementing ideas from recent publications and patents in the practicals and open book hands-on assessment

Stage 4	Critical Systems	Progress towards	Students will be	Students will be	Students will be	Students will be	Students will be	Students will be	Students will be	Students will be
	(CRSY)	PLO	able to critically	able to select and	able to choose	able to make	able to assess	able to	able to identify	able to
			assess a range of	apply	between	pragmatic	how teams	comprehend,	legal, ethical and	comprehend the
			complex	appropriate	different	decisions over	should be	distill and explain	societal	motivation and
			scenarios at	solutions to	hardware- and	the whole	managed to	complex	responsibilities	impact of cutting-
			different levels	future safety-	software-based	development	support the	scenarios and		edge research
			of abstraction	critical problems	solutions to	and maintenance	development and	development		
			and determine		achieve the right	lifecycle	maintenance of	challenges		
			how these can		balance between		systems			
			be mitigated		predictability and					
			through process		fault tolerance					
			and design							
		By working on	by analysing how	by applying a	by studying	by analysing how		by taking part in	by considering	by practising and
		, , ,		range of	different design	individual	accidents have	lecture	the potential	delivering
		assessed	occurred in the	techniques in a	solutions for	decisions affect	occurred due to	discussions and	impact of how	solutions through
		through)	past and how	variety of	given problems	other parts of	inappropriate	through the	systems are	all activities in
			they might occur	systems and		the engineering	teamwork and		developed and	the learning
			in the future. In	contexts		lifecycle for a	management,	part of the	operated	design
			both open			system. In the	and what	assessment		
			assessment			written open	certification			
			(presentation			assessment,	standards state			
			and report),			students will				
			students will			solve complex				
			consider			engineering				
			different ways of			problems				
			using			deciding what				
			computational			information is				
			thinking at			gathered as part				
			different levels			of the evidence				
			of abstraction to			and justifying				
			address			engineering				
			significant real-			decisions based				
			world problems.			on the limited				
						information to				
						support a safety				
						case				

Stage 4	Cryptography	Progress towards		Students will be	2		Students will be
	Theory and	PLO	able to evaluate	able to assess			able to
	Applications		appropriate	how information	n		independently
	(CTAP)		criteria for	may leak from			select, review
			cryptographic	physical			and summarise
			strength and to	implementatio			leading edge
			analyse	of an algorithm			research in a
			cryptographic	(side channels)			cryptographic
			algorithms	and make			topic, and apply
			against those	recommendati	on		the knowledge
			criteria using	s to rectify such			gained to new
			modern	problems, and	:0		problems
			techniques, to	make			
			expose their	independent			
			weaknesses and	assessments of			
			propose how	the strength of			
			they may be	given algorithm	S		
			strengthened				
		By working on	by studying the	by implementing	g		by engaging with
		(and if applicable,	principles behind	cryptographic			material
		assessed	the construction	algorithms and			regarding leading
		through)	of cryptographic	attacks on ther	١,		edge research in
			algorithms of	and by studying			cryptography
			various types	how hardware			
			(stream, block,	and software			
			public key)	combinations			
				contribute to tl	ie		
				security and			
				effectiveness o	a		
				cryptosystem			

Stage 4	Evolutionary Computation (EVCO)	Progress towards PLO	Students will become familiar with understanding stochastic optimisation and search algorithms. They will also develop skills including choice of representation, ability to select or develop an appropriate algorithm /data structure and ability to develop appropriate validation	Students will be able to adapt to the new paradigm of metaheuristic search	Solve will be able to solve ill- understood problems		Students will use both theoretical and practical knowledge of evolutionary search and will appreciate the issues of how to communicate, argue, assess and statistically analyse the proposed solution of the problem, and the choice of design algorithm
		By working on (and if applicable, assessed through)	by practising the analysis of a variety of problems, and by implementing different types of evolutionary algorithms and data structures. Open assessment involves analysis of a number of problems, and requires implementations as above.		by applying evolutionary search		by implementing an algorithmic solution to a complex problem. The assessment requires a full report on design decisions, implementation details, statistical analyses of results, and discussion.

Chara A	Formational	Dua augus da constitution	Cadata	Charles has a con-	Chindanta anta ind				Chindren hand in
Stage 4	Functional Programming	Progress towards PLO	Students increase their	Students become more able to	their ability to				Students become more able to
	1 "	PLO	capacity for	assess and to	express and to				recognise and to
	Technology (FUNC)		effective		•				achieve potential
	(I ONC)		abstraction and	views and	practice, and to				applications of
			fluency of	methods in	make effective				novel software
			thought when	software	use of new				technologies
			reasoning about	composition	software tools				teermologies
			programs and	Composition	55.6.00.0				
			computations						
		By working on	by solving a	by acquiring and	by making				by carrying out
		(and if applicable,	series of	applying new	practical use of				application-
		assessed	problems	concepts in a	state-of-the-art				based exercises
		through)	requiring	programming	tools for the				in functional
			techniques of	paradigm that is	evaluation and				programming
			abstraction and	beyond the	verification of				
			reasoning in the	mainstream.	functional				
			context of	Assessment	programs				
			recursive	requires practical					
			structures and	use of these					
			functions.	concepts in the					
			Assessed via a	functional					
			closed practical, where students	programming					
			solve given	paradigm.					
			problems, using						
			functional						
			programming.						
Stage 4	Model-Driven	Progress towards	Students develop	Students	Students develop	Students develop	Students become	Students become	Students become
	Engineering	PLO	and consolidate	develop a strong	•	a strong	able to	able to	able to
	(MODE)		skills in	understanding of		understanding of	communicate the		appreciate open
	[` ′		identifying	trade-offs that	implementing	the role and	trade-offs under	non-technical	challenges in the
			appropriate	they can apply to		suitability of	consideration	issues can affect	field of model-
			abstractions, in	new modelling	languages and	model-based	when developing	the successful	driven
			distinguishing	problems and	model-	techniques in	domain-specifc	application of	engineering
			essential from	domains	management	different phases	languages and	model-driven	
			accidental		programs using	of the software	model-	engineering	
			complexity and in		industry-	development	management	techniques in	
			bridging different		standard	lifecycle	programs	real-world	
			levels of		techniques and			scenarios	
			abstraction in a		tools				
			rigorous manne						

		(and if applicable, assessed through)	by developing a number of domain-specific modelling languages and model- management programs	by evaluating different design alternatives for domain-specific languages and model - management programs. In the open assessment, students use cutting-edge open-source technologies to develop a bespoke domain-specific modelling language and supporting automated model-management facilities, for a domain for which there is	by using dedicated state-of-the-art modelling and model-management software	by acquiring hands-on experience with developing domain-specific languages and model-management programs	by justifying their design decisions during the module's practicals and formative asessment	by considering how the introduction of such techniques can impact the structure and operation of existing software development teams (eg shortage of suitably-trained engineers, resistance from existing team members)	by getting exposed to state- of-the-art model- driven tools and technologies
				which there is currently little or no off-the-shelf tool support.					
Stage 4	Natural Language Processing (NLPR)	PLO	Students will be able to develop machine learning algorithms for complex problems in natural language processing	Students will be able to adapt and modify existing algorithms to new domains and new problems	Students will be able to develop their own software solutions to novel problems	Students will be able to analyse problems in industrially relevant scenarios which are similar to a given problem	Students learn how to communicate research results clearly and concisely to a wider community		Students will be able to apply the latest techniques to novel problems

		By working on (and if applicable, assessed through)	mathematical principles underlying a range of current machine learning algorithms for natural language processing. Open assessment: individual project, with journal-style paper and working code	assessment: individual project, with journal-style paper and working code	by implementing a range of different methods for processing natural language	by performing an in-depth analysis of that specific problem in natural language and implementing its solution		by writing their assessment as a journal-style paper		by understanding new developments within natural language processing
Stage 4	Topics in Privacy and Security (PSEC)	Progress towards PLO	able to analyse the effectiveness of existing and new cybersecurity solutions within specific scenarios, to	Students will be able to judge the challenges associated with new classes of threats and vulnerabilities, and the relative merits of new types of security controls that will emerge in the future	Students will be able to employ rigorous software engineering processes, capturing security requirements as an integral part of the requirements of a system, and thus designing, implementing and testing software with security in mind	security risk management perspective, that take into account social, legal and	Students will enhance their ability to make effective contributions as part of project teams, and to desribe their team's work to a knowledgeable audience	Students will be better able to communicate with technical stakeholders about designs and tradeoffs of non-trivial computational problems in a structured, concise and clear manner	Students will be in a better position to lead responsible professional careers, aware of key legal and ethical issues associated with their professional roles and with those of the computer systems they develop and use	Students will improve their ability to analyse the impact of new or unfamiliar technologies on cybersecurity

	I		ı	1	ı	ı		ı	ı	1
		, ,	by learning the	by studying	by understanding		by working on	by presenting	by learning	by learning about
		(and if applicable,		recent research	the principles	and carrying out	and presenting to		about the	and assessing the
			underpinning a	papers and	underlying	·		formative	influence of the	security
		through)	wide range of	industry reports	secure software	management	a team project on		social, legal and	implications of
			access control	to identify the	development,	tasks based on	biometrics for	project and	ethical context	emerging and
			mechanisms, a	assumptions,	through ethical	the established	the formative	through writing a	on the use of	future
			broad spectrum	limitations,	hacking and	guidelines from	assessment, and	formal report	encryption, and	technologies (eg
			of cryptosystems	benefits and	security protocol	the ISO 27005	working in small	describing the	about legal and	self-driving cars,
			and security	tradeoffs of	modelling and	standard	groups during the	software tool	ethical aspects of	telepresence and
			protocols, and	different security	analysis during		security risk	developed for	security risk	telehealth, and
			approaches to	controls and the	practical		management	the summative	management.	quantum
			security risk	characteristics of	sessions, and by		practicals	assessment	Assessment	computing)
			analysis.	the threats they	software tool				requires	
			Assessed by	prevent or	development for				students to	
			individual	mitigate	the open				perform a risk	
			report: students		assessment				management	
			design,						exercise, which	
			implement and						takes into	
			evaluate a new						acocunt legal,	
			software tool for						ethical and	
			analysis of						technical issues	
			security-related						associated with	
			aspect of						use of a	
			computer						computer system	
			systems							
Stage 4	Quantum	Progress towards	Students will be	Students will be		Students will be			Students wil be	Students will be
Ŭ	Information		able to	able to take an		able to take			able to take part	able to make
	Processing (QIPR)		understand the	active part in the		advantage of			in ethical	informed
	,		fundamental	introduction of a		some simple			discussions on	decisions about
			operations of a	broad range of		distributed			the use of	future
			future quantum	quantum		scenarios with			quantum	developments
			internet	technologies		incomplete /			cryptography	and to inform
						erroneous			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	interested
						information				stakeholders
		By working on	by learning	by manipulating		by applying Bell			by learning	by understanding
		(and if applicable,		quantum		inequalities and			about quantum	the scope of
			teleportation.	information and		·				quantum
			Assessed by			quantum error			cryptography. Assessed by	information
		through)		applying no-go		correction			1	
			closed exam	theorems					closed exam	techniques

Stage 4	Quantum Computation (QUCO)	Progress towards PLO	Students will develop new paradigms for dealing with complex problems through novel representations	Students will be prepared for the introduction of new quantum languages, algorithms and protocols		Students will be able to engineer solutions to simple computational problems with limited information access		Students will be able to understand and participate in future trends in cryptosystems	Students will be able to communicate and advise stakeholders whether a particular problem would be suitable for a quantum solution
		By working on (and if applicable, assessed through)		by solving benchmark quantum computational algorithms		by learning about computation on superpositions		by studying Shor's algorithm for breaking public key cryptography. Assessed by closed exam	by understanding the basics of quantum computation. Assessed by closed exam
Stage 4	Software Testing (SOTE)	Progress towards PLO	Students will be able to create testing plans that are both tractable and justifiably adequate	Students will become able to test systems implemented with a range of technologies, languages and paradigms	Students will learn how to test systems and to evaluate and justify their testing	Students will learn how to carry out testing under realistic conditions at all stages of the lifecycle	Students will be able to communicate test plans and results in a clear and unambiguous form	Students will become more aware of the possible consequences of unethical and unprofessional behaviour	Students will gain some ability to move bleeding-edge technologies into the space of those we trust

		(and if applicable, assessed through)	of behaviours and properties	by designing testing approaches for those technologies, languages and paradigms	by designing testing approaches taking account of stakeholder needs and the implementation details of the system under test. For the open assessment, students test an existing software system (usually from public open-source repository). They must define requirements given multiple sources and possible stakeholders, define test plan, carry out the testing and evaluate both the quality of their testing and the quality of the software under test.	for which specifications are inadequately defined. For the open assessment, students test an existing software system (usually from public open-source repository). They have to deal with	by writing testing reports	by considering a variety of historical cases where inadequate testing cause significant risk, loss or harm	by defining testing approaches for systems built with technologies at the edge of our understanding
Stage 4	Static Analysis and Verification (SAVE)	Progress towards PLO	Students will become able to analyse and test their programs using mathematical representations and abstractions to describe interfaces	Students will learn to deal with a variety of testing techniques and a variety of techniques to ensure reliability	Students will understand how to specify and develop alternative algorithms	Students will understand programming as part of an engineering discipline with solid mathematical foundations	Students will learn about the issues related to ambiguity and incompleteness in informal descriptions		

		By working on (and if applicable, assessed through)	by learning to write formal assertions within code. Assessed through closed exam	by learning to write assertions using mathematical notations. Assessed thrugh closed exam	by learning formal characterisations of the notion of correctness	by learning the mathematical principles of correctness		by learning about formal modelling		
Stage 4	Systems Architecture (SYAR)	Progress towards PLO	Students will be able to critically assess how an appropriate system can be developed, in a wider variety of complex scenarios at different levels of abstraction	Students will be able to apply a new range of terminology and modelling approaches	Students will be able to evaluate trade-offs between different design solutions	Students will be able to make pragmatic decisions over the whole development and maintenance lifecycle	Students increase their ability to manage their own time and that of others, to organise work into manageable parts, to plan their team's time and to work towards a common objective	able to comprehend,	Students will be able to identify legal, ethical, professional and societal responsibilities	Students will be able to comprehend the motivation and impact of cutting- edge research
		By working on (and if applicable, assessed through)	by analysing how systems may or may not deliver the expected quality attributes. Assessed by closed exam, in which students will be expected to consider diffeent ways of using computational thinking at different levels of abstraction to solve complex problems which address significant real-world problems	by learning to design and analyse systems	by considering a range of business drivers	by analysing alternative approaches to development. In the closed exam, students will define and address complex engineering trade-offs, designing and justifying the architecture to support the overall development lifecycle	by taking part in practicals and a group system design exercise	by taking part in lecture discussions and through the seminars given as part of the assessment	by considering the potential impact of how systems are developed and operated	by taking part in lecture discussions and through the assessment

Stage 4	ISM CS AI MEng	Progress towards	Students will	Students will	Students learn	Students will be	Students will	Students will be
Stuge 4	Project (PRIA)	PLO		learn how to	how to engineer		gain awareness	able to
	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		` '	apply AI	solutions to	·	of issues of	contribute in an
				principles to	problems in	expound existing		original way to
			,	deliver working	which		academic	an established
			apply new Al	systems in time	computation	computational	integrity in	area of research
			techniques and	to answer a	forms a	problems, and	computer	or development
			ideas and will	project brief, and	significant part	explain their own	science	within AI,
			learn critical and	to ask questions		approach to such		demonstrating a
			experimental	of the project		problems and		practical
			skills	brief or refine it		how they have		understanding of
				as needed		evaluated their		how established
						own approach,		techniques of
						and will be able		research and
						to tailor their		enquiry are used
						writing and		to create and
						presentation to a		interpret
						general,		knowledge
						informed		
						audience		
						succinctly and		
						consistently		

		By working on (and if applicable, assessed through)		independently defining and tackling a problem in their project that will not be entirely 'covered' in other modules, and by undertaking a targeted search for and review of literature in a given area and considering how to apply/extend it. Assessed in the project	by working out how to engineer an AI solution which meets the requirements of the project brief within the given time frame, and by focussing on usage scenarios and definining a clear sense of the requirements for and application of the product. Assessed in the project presentation and report.	by undertaking an engineering project, including design, implementation and evaluation. Assessed in project report and presentation. Each chooses a project topic, so "deeper skills in chosen areas" are assessed.		by writing a substantial project report, and preparing and delivering a presentation, with both formats being subject to strict length constraints. Assessed by report and presentation, which are written for 'informed computer scientist'.	their project work and when writing their project report, and also by undertaking explicit training in academic integrity and the use of plagiarism detection software as a writing / research aid. Assessed by a	by conducting supervised individual research which is relevant to the project, where the project topic is either proposed by a supervisor (and often arising from ongoing research work), or self-proposed (perhaps arising from year-in-industry experiences, or individual students' interest). Assessed by report and presentation.
Stage 4	Group Project (Integrated Masters) (GPIG)	Progress towards PLO	Students practise the application of the skills of computational thinking in the context of a significantly-sized problem, applying foundational computer science learnt in previous years	consider many possible languages and technologies to construct their solution, inclduing available open-	Students are able to construct a solution to a significantly-sized open-ended problem from industry, using software and hardware as appropriate	of working with incomplete and changing	Students organise their own teams and work effectively to meet external deadlines	Students are able to communicate with the industrial client, with the responsible academic and with other teams, clarifying and negotiating where necessary and producing the required final documentation	Students are mindful of risk management and the legal and ethical implications of the system they are developing	Students use the knowledge they have previously gained in cutting-edge computer science, together with research into new areas that may be relevant, to produce a systems solution

By working on	by working in	by exploring the	by working as a	by exploring the	by negotiating	by establishing	by maintaining a	This programme
and if applicable,	teams to produce	different	team and using	evolving system	their own team	clear lines of	risk register and	produces highly
ssessed	a solution to a	technologies and	established	requirements, as	roles and	communication,	considering key	competent
hrough)	problem sourced	tools available	software and	presented by the	processes, so	and, working	legal and ethical	graduates who
	from industrial	and selecting the	systems	industrial client,	that effective	within these, by	implications as	are equipped to
	clients, possibly	most	engineering	and resolving any	contributions are	exchanging	necessary	become leaders
	using commercial	appropriate for	practices to	incompleteness	made to the	information with		in computer
	or open-source	the given	produce a system		overall objectives	other		science and
	products and	problem and	solution that	changes as they		stakeholders and		artificial
	tools	their team.	meets user needs	occur		presenting their		intelligence and
		Assessed by				final system in a		who understan
		group reports				compelling		the implication
		and				presentation and		of their work
		presentation:				report which		both for
		students are				showcase to the		themselves and
		required to use				client the merits		for society as a
		cutting-edge				of the proposed		whole. Through
		techniques and				solution		the programme
		tools to develop						you will see tw
		a systems						integrated
		solution that						strands of work
		exploits new						which help you
		technolgies,						to develop both
		paradigms and						your
		models.						computational
								thinking and
								your skills as an
								engineer. It is
								the combinatio
								of these two
								areas that will
								make you
								attractive to
								employers,
								enabling you to
								make an
								immediate
								contribution
								when you move
								into
								employment.
								Cimpioyinent.
								The programme
								will provide you
								with a solid
								foundation in
								1
								the principles
								and practices of
		1			I	l	1	computer

artificial